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Resource

The completion of the Mammalian Gene Collection
(MGC)
The MGC Project Team1

Since its start, the Mammalian Gene Collection (MGC) has sought to provide at least one full-protein-coding sequence
cDNA clone for every human and mouse gene with a RefSeq transcript, and at least 6200 rat genes. The MGC cloning
effort initially relied on random expressed sequence tag screening of cDNA libraries. Here, we summarize our recent
progress using directed RT-PCR cloning and DNA synthesis. The MGC now contains clones with the entire protein-coding
sequence for 92% of human and 89% of mouse genes with curated RefSeq (NM-accession) transcripts, and for 97% of
human and 96% of mouse genes with curated RefSeq transcripts that have one or more PubMed publications, in addition
to clones for more than 6300 rat genes. These high-quality MGC clones and their sequences are accessible without
restriction to researchers worldwide.

[Supplemental material is available online at http://www.genome.org. The accession nos. and properties of all clones and
sequences are listed in the Supplemental material and at ftp://ftp.ncbi.nih.gov/repository/MGC/MGC_project/.]

cDNA clones containing the entire protein-coding sequence of

mRNA transcripts (full-CDS clones), together with corresponding

high-quality sequences, are essential resources for annotating

protein-coding genes on genomes and for expressing the protein

products of those genes. The Mammalian Gene Collection (MGC)

was established as a multi-institute effort at the National Institutes

of Health (NIH) to provide the research community with un-

restricted access to sequence-validated human and mouse full-CDS

clones and their sequences (Strausberg et al. 1999).

The goal for MGC at the outset, in 2000, was to provide at

least one sequence-validated, full-CDS clone for each known hu-

man and mouse gene. A similar cDNA cloning program was funded

later for 6200 rat genes. The MGC high-throughput cloning, se-

quencing, and distribution infrastructure was also used for full-

CDS cloning programs for Danio rerio (ZGC; http://zgc.nci.nih.

gov/) and Xenopus laevis and Xenopus tropicalis (XGC; http://xgc.

nci.nih.gov/).

MGC clones initially were obtained by randomly picking

5000–20,000 colonies from custom cDNA libraries and end-se-

quencing the plasmid inserts. Those representing genes absent

from the collection were fully sequenced (Strausberg et al. 2002).

Using this approach, by June 2004 the MGC had acquired full-CDS

clones for 11,727 unique human genes, 10,171 unique mouse

genes, and 828 unique rat genes (Fig. 1), isolated from 154 human,

131 mouse, and 33 rat libraries, derived from a wide variety of

tissues and cell lines (Gerhard et al. 2004). Putative full-CDS clones

were sequenced to high quality, that is, with no uncertain base

calls and an average error rate of <1 error in 50,000 bp. Descriptions

of these libraries and their tissue sources are available at http://

mgc.nci.nih.gov/.

The progress of the MGC, XGC, and ZGC cloning programs,

from their start to March 2009, is shown in Figure 1, which also

gives the total numbers of genes represented and the total numbers

of clones in each collection. This report focuses on the MGC efforts

to complete the human, mouse, and rat collections since the last

MGC publication, in 2004 (Gerhard et al. 2004).

As the number of human and mouse full-CDS clones ap-

proached approximately 10,000, random EST screening of cDNA

libraries yielded cDNA clones for progressively fewer unique genes

over time (Fig. 2), and for fewer genes per thousand ESTs analyzed

(data not shown), significantly raising the cost of obtaining clones

for the unrepresented genes. Pilot studies to improve yield with

normalized cDNA libraries and protocols that favored cDNAs for

rarer transcripts and longer inserts also introduced additional

mutations, yielding an increased rate of nucleotide variation in the

cDNAs compared to the genome (Gerhard et al. 2004). Therefore, two

alternative approaches—directed RT-PCR cloning (‘‘PCR rescue’’) and

DNA synthesis—were implemented to obtain clones for the missing

genes. These approaches and their results are described below.

Results

PCR rescue

We selected targets for PCR rescue from RefSeq transcripts (Pruitt

et al. 2009b) for human and mouse genes not represented by full-

CDS clones in MGC (see Methods). In cases of multiple transcript

isoforms, we chose the isoform with the longest CDS supported by

transcript and protein homology in other mammalian species.

These targets were divided into two sets, with each assigned to one

of two laboratories. The methods used by each laboratory have

been described (Baross et al. 2004; Wu et al. 2004). Targets that

failed to be isolated at one laboratory were exchanged with the

other for a second attempt. A full list of the RefSeq transcripts and

their corresponding genes assigned for PCR rescue (together with

the CDS sizes and the outcome of each transcript’s PCR rescue) is

given in Supplemental Table A.

PCR rescue recovered 8862 full-CDS clones for 4088 human

genes (Fig. 2A) and 4774 mouse genes (Fig. 2B). RT-PCR reactions

frequently displayed additional bands on gel electrophoresis,

which cloning and sequence analysis often revealed as alternative

splice isoforms of the targeted transcript (M Hirst, T Zeng, K Tse, A

Delaney, J Pang, J Wang, G Taylor, A Deng, M Moksa, K Fichter,

et al., in prep.). Clones of isoforms with a CDS length at least 50% of

the CDS length of the targeted transcript were accepted by MGC, as

long as they met criteria consistent with a full CDS (see Methods).

1A complete list of authors and affiliations appears at the end of the
paper, before the Acknowledgments section.
2Corresponding author.
E-mail gtemple@mail.nih.gov; fax (301) 480-2770.
Article published online before print. Article and publication date are at
http://www.genome.org/cgi/doi/10.1101/gr.095976.109.
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Target size most strongly influenced the outcome, with 64%–

70% success for 0.1–3-kb targets falling progressively to zero for

targets of 9 kb and larger (Fig. 3). Success also correlated inversely

with the level of mRNA expression (Supplemental Fig. S1). Overall,

one or more full-CDS clones were obtained for 65% of targeted

genes.

DNA synthesis of full-CDS clones

After two attempts at PCR rescue, MGC still lacked full-CDS clones

for about 2200 human genes and about 1800 mouse genes with

curated RefSeq transcripts (accession prefix NM_). Compared to

the expense for further attempts at PCR rescue, DNA synthesis

provided a cost-effective alternative for obtaining clones for tran-

scripts of most outstanding genes in MGC.

DNA synthesis also made it practical to synthesize the CDS

precisely, without additional 59- or 39-untranslated region (UTR)

sequences, facilitating the subsequent use of these clones to pro-

duce proteins with N-terminal and C-terminal fusion tags using

the Gateway cloning system. The MGC full-CDS clones generated

by DNA synthesis were prepared in a Gateway Entry vector, per-

mitting the subsequent transfer of inserts into a wide range of

expression vectors by site-specific recombination (Hartley et al.

2000), a transfer method with a very low risk of introducing mu-

tations into the transferred inserts (JL Hartley, unpubl.).

The protein-coding sequences of 3647 RefSeq accessions

supported by known transcripts and protein orthologs were

assigned for DNA synthesis to two companies (Methods). The

numbers and sizes of human and mouse transcripts assigned for

synthesis and the rate of success for each size category are given in

Figure 4. The contributions of DNA synthesis to the total MGC

human and mouse full-CDS clone collections are displayed in

Figure 2, A and B. DNA synthesis provided MGC with full-CDS

clones for 86% of the 3414 outstanding genes assigned. Synthesis

succeeded for 94% of targets with a CDS of 4 kb or less, but success fell

dramatically for larger targets (11% of 46 targets with CDS >10 kb).

Finally, 318 cDNA clones for 126 high-priority genes that had

failed one or more attempts at synthesis and stable cloning of

a full-CDS were accepted by MGC with the CDS cloned in two or

more fragments. For 92 of these genes, the partial-CDS clones to-

gether compose the entire CDS (Supplemental Table B).

Predictions of new human genes

Multi-exon gene predictions

Starting in 2005, MGC sought to predict human multi-exon genes

absent from the RefSeq and other major gene catalogs. We used

algorithms that relied primarily on comparative sequence data,

with or without existing EST or cDNA evidence: N-SCAN (Gross

and Brent 2006), N-SCAN_EST (Wei and Brent 2006), Exoniphy

(Siepel and Haussler 2004), and TransMap (Zhu et al. 2007). Results

were confirmed by sequencing RT-PCR products of two or more

spliced exons in the predicted transcripts from each postulated

gene locus. This effort identified 734 novel gene fragments (NGFs)

containing 2188 exons with little or no prior cDNA support, cor-

responding to an estimated 563 distinct genes. At the time of this

analysis, 327 of these genes were completely absent from the

cDNA-based RefSeq and Vega gene catalogs (Wilming et al. 2008;

Pruitt et al. 2009b), and 178 were also absent from the Ensembl

collection (Hubbard et al. 2009). Many other gene fragments were

identified that represented extensions of known genes. These

novel fragments contributed transcript evidence for 480 RefSeq

accessions later assigned for PCR rescue. For seven of these acces-

sions, the NGFs provided the only direct transcript support. Details

of the methods and results of this program were published in 2007

(Siepel et al. 2007). Subsequent to our analysis, 42 genes over-

lapping the novel gene fragments have been added to RefSeq.

Single-exon gene predictions

To minimize the inclusion of pseudogene transcripts and other

non-protein-coding sequences in the MGC, our random-EST

cloning and PCR rescue efforts intentionally excluded transcripts

of single-exon genes (SEGs) and transcripts potentially encoding

proteins of fewer than 100 amino acids (Strausberg et al. 2002).

These criteria excluded the isolation of transcripts of authentic

single-exon genes and some multi-exon genes encoding short

protein-coding transcripts, such as for some human olfactory

Figure 1. Cumulated gene counts for MGC, XGC, and ZGC. The progressive addition of clones, measured by genes represented in each collection, is
shown for MGC, XGC, and ZGC from the beginning to conclusion of these programs. ‘‘Gene Count’’ is the total final number of RefSeq genes represented
by each set of clones. This number includes some noncurated genes (XM accessions) that are not counted in Table 1. ‘‘Clone Count’’ includes all clones,
including duplicate transcripts and isoforms. Isoforms constitute 2%–3% of the human, mouse, and rat collections.
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receptors (Carninci et al. 2005; Glusman et al. 2006; The ENCODE

Project Consortium 2007).

To assess how many SEGs are not annotated in current gene

catalogs, we considered all open reading frames (ORFs) longer

than 200 bp in the human genome. We used logistic regression

analysis to select 351 ORFs most likely to encode unannotated

SEGs, based on features such as cross-species conservation, protein

homology, and genome-wide expression data (Methods). These

candidate SEGs were tested for expression by RT-PCR, with no-RT

controls to detect results due to genomic contamination. Expres-

sion was confirmed in 198 out of 351 candidates (57%) (Supple-

mental Table S1). Additional RT-PCR experiments, using RNA from

several tissues and variable numbers of PCR cycles, suggested that

these SEG candidates are expressed at low levels and in a tissue-

specific manner, especially in the testes and cerebellum. However,

a large fraction of negative reference loci (selected from annotated

pseudogenes and regions annotated as intronic or intergenic by

the ENCODE pilot project) also showed evidence of expression by

RT-PCR, consistent with previous reports (Carninci et al. 2005;

Glusman et al. 2006; The ENCODE Project Consortium 2007).

Attempts to confirm expression at the protein level were in-

conclusive, with only nine of 198 positive candidates and six of the

138 negative reference loci matching peptide mass spectrometry

(MS) spectra (http://bioinfo2.ucsd.edu/MSGeneAnnotation/index.

html), perhaps in part owing to low levels of protein expression

and incomplete databases of peptide MS spectra. Thus, whether

these 198 candidate SEGs are true protein-coding genes remains

an open question.

These ambiguous results underscore the challenge of obtaining

a fully comprehensive set of human protein-coding genes, given

pervasive genomic transcription, expressed pseudogenes, and true

genes that are expressed transiently and at low levels. Although our

genome-wide search for candidate SEGs turned up relatively few

instances with, at best, questionable evidence for protein-coding

function, our methods could have overlooked some fast-evolving,

very short, lineage-specific, or recently duplicated genes.

Final numbers of genes represented by MGC clones

Table 1 gives the final numbers of human, mouse, and rat genes

represented by one or more full-CDS clones in the MGC, compared

to the totals for four classes of protein-coding genes. The MGC now

Figure 2. MGC progress represented over time by method. (A) Human; (B) mouse. The absolute contribution (by genes represented) of each cloning
method is shown for EST-based cloning, PCR-Rescue, and DNA synthesis, over time.
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contains clones for 92% of human genes, 89% of mouse genes, and

41% of rat genes with RefSeq curated (NM accession) transcripts,

regardless of publication status (line A); and contains full-CDS

clones for 97% of human genes, 96% of mouse genes, and 44% of

rat genes with one or more PubMed publication (line B). Table 1

also shows that MGC includes full-CDS clones for 93% of human

genes linked to a disease phenotype (line C), and for 95% of hu-

man and 93% of mouse transcripts listed as highly curated Con-

sensus CDS (CCDS) transcripts (line D) (Pruitt et al. 2009a). The

RefSeq transcripts for the genes represented in Table 1 and the

corresponding accessions of MGC clones are given in Supple-

mental Table C; and genes lacking full-CDS clones in MGC are

listed in Supplemental Table D. The size distributions of the final

MGC human and mouse clone collections, compared to the lon-

gest RefSeq transcript isoforms, are shown in Supplemental Table

S8. The relationships between the MGC, RefSeq, and Ensembl

human and mouse gene sets are shown in Figure 5.

Sequence variation in MGC clones

MGC clone variation versus dbSNP

The full-CDS sequences for all clones submitted to MGC were

compared to their corresponding reference genome (human clones

were also compared to the chimpanzee reference genome). Dis-

crepancies between a cDNA and its reference genome are anno-

tated in the GenBank records, with links to polymorphisms

recorded in dbSNP.

Table 2 shows the sequence discrepancies (single-nucleotide

mismatches and indels) found between MGC clones and the refer-

ence human (version 36.3) and mouse (version 37.1) genomes,

expressed as the number of differences observed per clone. Among

human clones, 57% contain no mismatch in the CDS and 72% no

nonsynonymous (NS) mismatches. Similarly, 66% of mouse clones

contain no mismatches in the CDS and 79% no NS mismatches.

Thus, the majority of clones are free of any differences in the CDS;

and 72% of human and 79% of mouse clones are free of NS changes.

Supplemental Table S2 presents the rates of sequence dis-

crepancy, based on total sequences of human and mouse clones,

together with the percentages of discrepancies that correspond to

validated polymorphisms in dbSNP. Because the mouse reference

genome sequence was derived from a single mouse strain, C57BL/6,

the variation in MGC mouse clones was divided into three cate-

gories, based on the strains that provided the RNA: C57BL/6 and

C57BL/6J; other known strains, including crosses to C57BL/6J; and

undocumented strains.

The variation per nucleotide observed in human MGC clone

coding and noncoding human sequences compared to the human

reference genome (Supplemental Table S2) is 9.1 3 10�4, 44.6% of

which is validated polymorphism in dbSNP (defined in the foot-

note to Table 2). For MGC mouse clones, the variation frequency

and percentage of variation in dbSNP vary with the strain of mouse

RNA used to prepare the clones. As expected, both the variation

(3.8 3 10�4) and the percent variation documented in dbSNP

(4.6%) are lowest for clones derived from C57BL/6.

Sequence variation due to RNA editing

Sequence discrepancies in MGC clones can also reflect post-tran-

scriptional editing of mRNA, which in mammalian cells is due al-

most exclusively to A-to-I editing, mediated by the adenosine de-

aminases acting on RNA (ADAR) family of enzymes (Bass 2002;

Gommans et al. 2008). The resulting inosine in the edited RNA is

read as guanosine by the in vivo cellular machinery, as well as by

the enzymes used in cDNA cloning and sequencing. To date, only

about 70 human mRNAs have been reported to contain A-to-I

editing sites in the CDS (Supplemental Table S3), whereas several

thousand examples of A-to-I editing in noncoding sequences of

the 59 and 39 UTRs and within introns of human pre-mRNA se-

quences have been reported (Athanasiadis et al. 2004; Kim et al.

2004; Levanon et al. 2004; Li et al. 2009).

We sought to identify candidate A-to-I editing sites in MGC

clones. Because MGC has produced only a single full-CDS clone for

most genes, we could not use the occurrence of coincident edits

within multiple clones to identify loci of selective RNA editing.

Therefore, we used two different tests to focus on identifying

clones statistically enriched for clusters of A-to-G changes com-

pared to the genome sequence (Supplemental Text S3). These two

tests detected 118 MGC clones with potential editing sites, of

which 87 were identified by both tests (Supplemental Tables S4, S5,

Figure 3. PCR rescue success versus target size. (Black bars) The num-
ber of assigned targets in each size range; (white bars) the number of
assigned targets that were obtained as full-CDS clones, with the number
of clones recovered shown above the bars. The triangles and trendline
show the percentage recovered for each size group. Excluded from these
calculations are RefSeq targets where the assigned CDS later was changed,
suppressed, or withdrawn over the course of the PCR rescue program.
Among 8764 human and mouse targets with changed annotation, we
obtained a full-CDS clone for 3197 (36%), including one 10.8-kb clone
(BC150731).

Figure 4. Synthesis success versus target size. (Black bars) The number
of assigned targets in each size range; (white bars) the number of assigned
targets that were obtained as full-CDS clones, with the number of clones
recovered shown above the bars. The triangles and trendline show the
percentage recovered for each size group. RefSeq targets where the
assigned CDS later was changed, suppressed, or withdrawn (233 in total)
were excluded from these calculations.
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and S6), with an apparent false-positive rate of 2%. Eighty-nine

percent of the clusters of A-to-G changes lie wholly or partially

within Alu repeat sequences, and 88% are within UTRs, consistent

with previous reports (Athanasiadis et al. 2004; Blow et al. 2004;

Kim et al. 2004; Levanon et al. 2004). Eleven clones within this set

of 87 show evidence of CDS editing, including clones for seven

genes that to our knowledge have not been reported previously to

have edits in the CDS (Supplemental Table S7).

Accessing MGC clones

From the years 2000 to 2007, MGC clones were archived at the

IMAGE Consortium (Lawrence Livermore National Laboratories),

which provided MGC clones to the scientific community through

five commercial distributors: Open Biosystems, Life Technologies

(formerly Invitrogen), and ATCC, in the United States; Gene Ser-

vices Ltd, in the United Kingdom; and imaGenes, in Germany. In

January 2008, all MGC, XGC, and ZGC clones were relocated to

a permanent new archive, at the HudsonAlpha Institute for Bio-

technology (HAIB), in Huntsville, Alabama. The HAIB website

(http://image.hudsonalpha.org/) now lists all MGC clones. Scien-

tists wishing to obtain MGC clones can order them, as before, from

the same five commercial distributors.

Table 3 lists the URLs of websites that provide useful in-

formation and search tools for users seeking information on and

access to MGC cDNA clones. Searches for MGC clones can begin at

the MGC website (http://mgc.nci.nih.gov/), at the NCBI portal

(http://www.ncbi.nlm.nih.gov/), or at the UCSC Genome Browser

(http://genome.ucsc.edu/). Also listed are tutorials on how to locate

MGC clones and details related to vectors, libraries, and tissue sources.

Discussion
The MGC now provides the scientific community with un-

restricted access to high-quality, full-CDS clones and sequences for

92% of human genes and 89% of mouse genes with curated RefSeq

(NM-accession) transcripts, and for 97% of human and 96% of

mouse genes with curated RefSeq transcripts and at least one

publication. The MGC also includes 6363 rat clones, representing

41% of rat genes encoding curated RefSeq protein-coding tran-

scripts. A complete list of MGC full-CDS clones, including iso-

forms, is provided in Supplemental Table C.

MGC clone quality

The high sequencing standards used by MGC means that errors in

MGC clone DNA sequence analysis are well below 1 in 50,000 bp.

The protein-coding sequence in the majority of human and

mouse clones perfectly matches its reference genome. Non-

synonymous (NS) changes are absent in 72% of human and 79%

of mouse clones, and 45.7% of NS changes in human clones are

documented as polymorphisms. For mouse clones, the percentage

of NS changes documented as polymorphism varies depending on

the strain used as the source of RNA. All differences from the ref-

erence genome are noted in the GenBank record for each MGC

clone.

Assuming that cloning procedures for the human and mouse

clones introduced mutations at roughly similar frequencies and

that the 6.5% of C57BL/6 variation matching dbSNP (Supple-

mental Table S2) largely represents variation within different

colonies of C57BL/6, the remaining 93.5% of the rate of se-

quence discrepancy in the CDS (2.7 3 10�4) suggests an upper

limit of 2.5 3 10�4 for the combined frequency of CDS muta-

tions arising from the preparation of the clones, sequencing er-

rors (#0.2 3 10�4), and RNA editing in both mouse and human

clones.

We identified a small percentage of MGC clones with changes

suggesting A-to-I editing of pre-mRNA. As reported previously by

others, most of these putative edited sites lie within UTR se-

quences and overlap Alu repeat sequences. We also identified new

evidence of A-to-I editing in the CDS of MGC clones for seven

human genes, detected by both of the tests we used (Supplemental

Table S7).

Maintaining high clone quality also depends on researchers

receiving the correct clone for the accessions they have ordered. To

detect and correct well-to-well contamination and errors in the

clone rearraying process, all clones on master plates at LLNL and

HAIB are end-sequenced to confirm their identity, prior to sending

replica plates to MGC commercial distributors. Incorrect clones are

replaced, if a suitable replacement is available, or removed. Results

of this QC process are posted at http://image.hudsonalpha.org/qc/

html/QCoverall.shtml.

Revised genome annotation

While the MGC PCR rescue program was under way, concurrent

progress in human and mouse genome annotations forced MGC

Table 1. MGC achievement

Gene classesa

Protein-coding genes Protein-coding genes in MGC

Human Mouse Rat Human Mouse Rat

A. All genes with curated RefSeq transcriptsb 18,877 19,357 15,389 17,421 (92%) 17,285 (89%) 6363 (41%)
B. Genes with $1 PubMed articles and

curated RefSeq transcriptsb 14,614 12,434 6236 14,102 (97%) 11,902 (96%) 2724 (44%)
C. Genes with known disease phenotypec 2306 2208 2075 2152 (93%) 2047 (93%) 782 (38%)
D. Genes with CCDS transcriptsd 13,884 15,263 NA 13,131 (95%) 14,124 (93%) NA

aGenes counted in Classes B, C, and D are subsets of Class A and not mutually exclusive.
bCurated RefSeq transcripts (NM-accession transcripts) are a subset of RefSeq transcripts that have been validated based on protein and DNA evidence.
cHuman genes in this category were identified by searching OMIM for records with ‘‘phenotype description, molecular basis known’’ and ‘‘gene with
known sequence and phenotype’’ and then retrieving Gene Links that are not in the phenotype-only category. Mouse and rat genes in this category were
identified using NCBI HomoloGene links for the above-mentioned human genes.
dConsensus CDS (CCDS) includes a subset of transcripts with agreement on the full CDS by annotation specialists at NCBI, European Bioinformatics
Institute, University of California at Santa Cruz, and the Wellcome Trust-Sanger Institute (Pruitt et al. 2009a); because the numbers are based on RefSeq
mRNAs in the CCDS set that are current as of March 23, 2009, they are less than the total CCDS gene number. (NA) Not applicable; CCDS genes have not
been defined for rat.
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to retire and reassign ;45% of the target sequences assigned

between 2004 and 2007. Updated CDS annotation can, for ex-

ample, reposition the annotated ATG start codon of a CDS fur-

ther 59, extending the CDS, or excise a length of CDS sequence

deemed to be a retained intron, or retire a transcript from a likely

pseudogene.

With the conclusion of the MGC project, the GenBank re-

cords of MGC clone sequences have been frozen, with no further

updates. What constitutes a full-length coding region for some of

the genes and transcripts for which MGC has clones is likely to

change in the future; therefore, users planning to order MGC

clones will need to monitor for these changes. Users can employ

genome browsers and gene-specific databases, such as NCBI’s

Evidence Viewer, Entrez Gene, and the UCSC Genome Browser,

to view relevant regions of the genome (browsers) or gene-related

information (Entrez Gene). MGC has added a guide (see Table 3) to

its website to help users evaluate MGC clone sequences in light of

current genome annotation.

Future collections

Since its inception, the MGC approaches to cloning cDNAs for

additional genes evolved by exploiting concurrent technical ad-

vances: dramatically cheaper DNA sequencing; improved bioin-

formatics methods for gene prediction and gene annotation; and

cheaper, more accurate DNA synthesis for building cDNA clones.

These advances made it feasible for MGC to achieve full-CDS clones

for nearly 90% or more of a well-defined set of RefSeq transcript

targets, transcribed from <2% of the human and mouse genomes

(Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002; Carninci

et al. 2005).

Recently our view of the eukaryotic transcriptome has ex-

panded dramatically in size and complexity to include multiple

splice isoforms for 90% or more of multi-exon genes (Kuhn et al.

2009), and a vast network of sense and antisense non-protein-

coding RNAs, some of which are well studied (Carthew and

Sontheimer 2009), with many others still largely uncharacterized

and of uncertain biological relevance (Kapranov et al. 2007;

Pheasant and Mattick 2007; Guttman et al. 2009).

These major developments have implications for how one

would build another collection of clones for RNAs of contempo-

rary interest, such as for splice isoforms or non-protein-coding

RNAs. Given the speed and cost efficiency of DNA synthesis, when

the need arises for a particular transcript, a laboratory now can

order most cDNAs to be synthesized. Indeed, this approach may

suffice for many laboratories, given the MGC experience that only

a handful of laboratories ordered entire collections of human or

mouse cDNA clones for large-scale studies, while the overwhelming

majority of customers ordered clones for <10% of the collection

(C Pennacchio, unpubl.).

Yet high-throughput programs to study protein–protein in-

teractions, protein structure, and protein function clearly profit

from access to centralized collections of large numbers of clones.

Such collections offer the scientific community benefits of scale,

by providing clones of lower cost and more uniform quality; by

reducing the waste of duplicated clone preparation within the

community; and by relieving individual laboratories of the burden

of clone quality control and distribution.

Less formal centralized approaches also can provide some of

the same benefits. For example, the ORFeome Collaboration (OC;

http://www.orfeomecollaboration.org/) is an informal network of

laboratories, consisting of 10 contributing academic, commercial,

and government groups (including the MGC), that arecooperating—

largely without dedicated funding—to build a public collection of

human cDNA clones in an expression-convenient format.

The growing emphasis on defining cellular networks, with

myriad interactions of RNA, DNA, and protein, may result in

an increased demand for such centralized collections in the

future.

Methods

Target selection

From all protein-coding genes with RefSeq transcripts annotated

on the human and mouse genomes (Pruitt et al. 2009b), we selected

targets for genes outstanding from MGC based on two properties:

their potential research and medical importance, and the level of

supporting evidence that the transcript represents a CDS-complete

product, as previously described (Strausberg et al. 2002).

For assigning PCR rescue targets, transcripts for human and

mouse genes were ranked by the number of peer-reviewed publi-

cations associated with the genes. For genes lacking publications,

orthologs and the number of gene-specific NCBI web queries were

used for ranking. In the initial PCR rescue efforts, some potential

Figure 5. Venn diagram comparing the number of loci containing
protein-coding genes from MGC, RefSeq, and Ensembl. (A) Human; (B)
mouse. The loci were computed by clustering transcripts from all three
gene sets based on the overlap of the genomic location of the CDS portion
of the exons. When a transcript is not uniquely mapped to the genome,
the clusters for all mappings of that transcript were combined and
counted as one locus. For human, this resulted in 17,239 loci containing
MGC clones, 18,494 loci with RefSeq mRNAs (Pruitt et al. 2009b), and
20,856 Ensembl gene loci (Hubbard et al. 2002). Mouse had 17,455 loci
with MGC clones, 19,064 loci with RefSeq mRNAs, and 23,087 Ensembl
gene loci. Genes counted as shared between any two gene sets exclude
genes in the third set. BLAT (Kent 2002) alignments of MGC clones and
RefSeq mRNAs (NM accessions) obtained from the UCSC Genome
Browser database (Karolchik et al. 2008) for human genome assembly
36.1 and mouse assembly 37, and Ensembl Release 52 were used in the
analysis. Genomic loci serve as an estimate of the number of genes in these
data sets. The counts vary from those seen in Table 1, owing to the dif-
ferent method of computation.
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transcript targets uncharacterized in the literature were based on a

single high-throughput cDNA cloning report and lacked protein

orthologs; in these cases, the annotated transcript was also ranked

based on the likelihood it contained a full-CDS. The full list of the

transcripts targeted by PCR rescue is provided in Supplemental

Table A.

For DNA synthesis, only RefSeq accessions (Pruitt et al. 2009b)

confirmed to be current and well supported by known transcripts

and protein orthologs (accession prefix NM_) were assigned.

RefSeq transcripts containing predicted sequence (accession prefix

XM_) were excluded. Candidates for DNA synthesis also un-

derwent a final assessment by the NCBI RefSeq staff, to ensure that

the CDS to be synthesized aligns to the genome and does not code

for any nonsynonymous changes. Targets for

outstanding genes were ranked for research

and medical importance using the same cri-

teria as used for PCR rescue, with additional

weight given to disease genes listed in

OMIM.

PCR rescue

Transcript targets for directed RT-PCR clon-

ing were assigned to two research groups,

at the Baylor College of Medicine and the

British Columbia Cancer Agency Genome

Sciences Center. The longest isoform gener-

ally was assigned for PCR rescue. Full de-

scriptions of the PCR rescue protocols used

by each center have been published (Baross

et al. 2004; Wu et al. 2004). Both groups

designed PCR primers flanking the target

CDS, including varying amounts of UTR se-

quence, and RT-PCR was performed on RNA

pooled from multiple tissues. Three to 12

clones from each RT-PCR reaction were iso-

lated. Following EST sequencing and gel

analysis, clones with the correct insert size

and 59- and 39-end sequences became candidates for full-insert

sequencing. After two RT-PCR cloning attempts, if one group failed

to isolate a suitable cDNA clone for an assigned RefSeq transcript,

that target was reassigned to the other group for another round of

PCR rescue.

Clones containing CDS inserts shorter than the CDS of

assigned transcripts were accepted into the MGC collection if

they met the following criteria: (1) the protein alignment and

hexamer analysis (Strausberg et al. 2002) does not indicate that

the CDS is partial; (2) the reading frame is consistent with

existing RefSeq records of the gene; and (3) the CDS length

is equal to or greater than one-half of the longest RefSeq CDS of

the gene.

Table 2. Sequence variation in MGC clones versus RefSeq genomes of human and mouse

No. of
discrepancies
per clone

Clones with no
discrepancies

(Fx total)

No. of
clones

examined

Average no. of
discrepancies

per clone
Frequency
(per kb)

Percent in
dbSNPc

Humana

Discrepancies in CDS + UTR 9713 (0.36) 27,188 1.87 0.91 44.6%
Discrepancies in CDS 15,551 (0.57) 27,188 0.89 0.64 54.6%
NS Discrepancies in CDS 19,636 (0.72) 27,188 0.47 0.33 45.7%

Mouseb

Discrepancies in CDS + UTR 12,062 (0.47) 25,679 2.69 1.28 37.5%
Discrepancies in CDS 16,839 (0.66) 25,679 1.35 0.97 46.6%
NS Discrepancies in CDS 20,205 (0.79) 25,679 0.55 0.40 31.5%

Sequence discrepancies are accepted in MGC clones only if they do not change the phase of reading
frame, alter the start or stop codons, or result in a CDS that is <50% of the length of the CDS of the
longest isoform.
a89.2% of human discrepancies are single-nucleotide mismatches, and 10.8% are indels, of which
11% are in the CDS (1.2% total discrepancies).
b89.3% of mouse discrepancies are single-nucleotide mismatches, and 10.7% are indels, of which
8.8% are in the CDS (0.94% total discrepancies).
cPercent in dbSNP is based on dbSNP build 129 and represents validated SNPs identified as (1) SNPs
with allele frequency data; (2) RefSNPs with at least two submitted SNPs, where at least one sub-
mitted SNP is by noncomputational method and is not a cDNA; (3) SNPs validated by submitter
confirmation; or (4) SNPs validated by DoubleHit criteria.
(NS) Nonsynonymous. PCR rescue and DNA synthesis clones have less than all or none of the
59- and 39-UTR sequences represented (see Methods).

Table 3. Websites providing information on the Mammalian Gene Collection

URL Description

http://mgc.nci.nih.gov/a MGC website provides search engines, lists of genes and libraries, and information on
library construction, vectors, tissue sources, and resources for human, mouse, and rat. This
site includes ‘‘A Guide to Finding MGC Clones and Evaluating Their Sequence.’’

http://xgc.nci.nih.gov/ As above, but for Xenopus laevis and Xenopus tropicalis clones and information
http://zgc.nci.nih.gov/ As above, but for Danio rerio clones and information
http://www.ncbi.nlm.nih.gov/genome/clone/

finding_cdna.shtml
‘‘Tips for Finding cDNA Clones’’ is an NCBI page with extensive details on locating

MGC clones.
http://www.ncbi.nlm.nih.gov/gene Entrez Gene supports query by MGC clone designation and directs users to the cDNA

clone order page.
http://www.ncbi.nlm.nih.gov/unigene UniGene provides links to MGC/XGC/ZGC, supports retrieval of clusters with MGC

clones, and directs users to the cDNA clone order page.
http://genome.ucsc.edu/ UCSC Genome Browser provides tracks that can be activated to display MGC and

ORFeome Collaboration clones aligned with individual human genes. Links lead to
additional information on the clone, associated protein, and to ‘‘Order cDNA Clone.

http://genome.ucsc.edu/goldenPath/help/
ucscGeneFishing.pdf

This tutorial, ’’Fishing for Genes in the UCSC Browser,’’ includes a section on
accessing information on MGC clones.

aThe MGC web page allows users to search for available clones by keyword or gene symbol. Entering ‘‘p53’’ as a keyword or ‘‘TP53’’ as a gene symbol yields
the result that one MGC clone exists, named ‘‘BC003596’’; the library name and IMAGE ID are also given. Clicking on the library name shows that this
library was derived from a renal cell carcinoma and gives information on the library construction, vector, and bacterial host strain used. Following the link
to BC003596 provides full details on the clone nucleotide sequence and encoded protein sequence. This page provides an ‘‘Order cDNA Clone’’ link
(upper right corner) that lists the IMAGE distributors that offer this clone for sale, together with direct links to each distributor.
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DNA synthesis

Following a successful Pilot Study (Supplemental Text S2), MGC

assigned native protein-coding sequences (CDS) of RefSeq NM-

accessions for synthesis to GeneArt (2564) and Codon Devices

(1177). A net total of 3647 targets (minus duplicates) were as-

signed. GeneArt synthesized the first ;90% of its assigned targets

in two versions, with a stop codon (TAA) and without a stop codon

(TAC). Subsequent assignments to both companies requested only

one version, with a stop codon (TAG). The largest CDS assigned

was 20,721 nt. Assigned sequences were designed with uniform

59- and 39-flanking sequences that include Gateway recombination

sites; and the full-CDS sequences plus flanking sequences were

cloned into a Gateway Entry vector, pENTR223.1, as described

(http://mgc.nci.nih.gov/Vectors). Final clones provided to MGC

were sequenced to MGC standards, as described below. The de-

livered CDS sequences were required to match exactly the assigned

RefSeq transcript.

In a small fraction of cases, the inserted sequence could not

be stably propagated in pENTR223.1, and those sequences were

provided to MGC in alternative vectors (indicated in the GenBank

record). MGC also required that its clones be delivered in phage-

resistant strains of Escherichia coli (tonA-, tonB-). Rarely, full-CDS

clones proved unstable in one or more phage-resistant E. coli

strains and were provided in non-phage-resistant strains. For 144

high-priority genes where the full-CDS insert proved unstable

in multiple vectors and host strains, MGC accepted stable

clones containing the CDS in multiple subfragments (listed in

Supplemental Table B). A list of all the assigned transcripts, with

their size and synthesis outcome, is included in Supplemental

Table A.

Single-exon gene (SEG) predictions

Computational methods were used to screen the NCBI human

genome sequence (Build 36.1) for all open reading frames (ORFs) of

length at least 200 bp and to select the 351 most promising SEG

candidates. To distinguish likely SEGs from pseudogenes, we used

syntenic alignments between the human and other mammalian

genomes; conservation of ORFs in multiple alignments with

mouse, rat, and dog; homology with known proteins and domain

profiles; whole-genome gene expression data; and other properties

of each ORF. These features were integrated by logistic regression,

after training the algorithms with both positive examples (known

SEGs) and negative (known and predicted pseudogenes).

Expression was confirmed for 198 out of 351 selected candi-

dates by RT-PCR, with RT-controls to detect results due to genomic

contamination. Many of the weakest candidates appear to be

fragments of pseudogenes. Indeed, we obtained an even higher

percentage of expressed ORFs (67% vs. 56%) among a negative

reference set of loci selected from annotated pseudogenes and re-

gions annotated as intronic or intergenic by the ENCODE pilot

project. Positive results for predicted SEGs and negative reference

loci were confirmed by DNA sequence analysis of ‘‘mini-pools’’ of

cloned RT-PCR products. A list of the SEG candidate and negative

reference loci is provided in Supplemental Table S1. To find pos-

sible matches against human proteins, Vineet Bafna’s group

(University of California, San Diego) screened our set of predicted

SEGs against an existing database of MS/MS spectra from human

kidney cell lines (http://bioinfo2.ucsd.edu/MSGeneAnnotation/

index.html; Tanner et al. 2007), verifying protein products of nine

of the 198 putative expressed SEGs (V Bafna, pers. comm.).

DNA sequence submissions

DNA sequencing was performed by standard capillary-based

methods, as described (Strausberg et al. 2002). All cDNA sequences

were submitted to GenBank together with phred quality scores, and

trace data were submitted to the NCBI Trace Archive. Clones

obtained from RT-PCR were required to meet the same stringent

sequencing quality that had been applied to clones from MGC

cDNA libraries (Strausberg et al. 2002; Gerhard et al. 2004): less

than one error per 50,000 bp, no uncertain base calls, and a phred

score of 30 or higher at each base pair. Synonymous and non-

synonymous changes were permitted within the protein-coding

sequences of PCR rescue clones, but changes that altered the phase

of CDS reading frame or introduced premature stop codons were

not permitted. Clones with 59 UTRs longer than 500 nt were

manually curated. Clones with a stop codon more than 55 nt 59 to

a splice junction and with a CDS at least 50% of the longest isoform

CDS were accepted into MGC, but were annotated in the GenBank

record as likely NMD candidates. All sequence differences between

the cDNA sequences and their genome are annotated in the

GenBank entry (misc_feature).

RNA editing analysis

Two tests were used to identify clones with putative A-to-G edits.

For test 1, we followed Kim et al. (2004) to identify clones with at

least one window of 100 nt that has: (1) more than five A-to-G

changes and (2) more than half of the total number of differences

with the genomic DNA as A-to-G changes. The 113 clones that

meet these criteria are given in Supplemental Table S4. Putative

edits reported as validated single-nucleotide polymorphisms

(multiple observed polymorphisms or genotyped polymorphisms

with minor allele frequency exceeding 2%) were discarded. No

clones with equivalent windows of G-to-A changes were identified,

although two clones with equivalent T-to-C changes and three

clones with C-to-T changes were identified, suggesting a false-

positive rate of ;2% in this list of A-to-G candidate edits.

Our second test identified clones that harbor at least one 100-

nt window of sequence with enough changes of a single type that

the probability of observing this window by chance is 10�8. We

defined the probability of observing a window with m changes as

P = 0.25Nrm where r is the observed mismatch rate per clone and N

is the number of genomic instances of the original nucleotide in

the sequence window (number of As for A-to-I editing). (Since

transitions are more common than transversions, 0.25 is a slight

underestimate of the number of changes expected for any single

type of transition.) We set P to 10�8, which means that for each

100-nt window, we assessed whether there are m changes where

m = log(10�8/0.25N)/log(r). We identified 118 clones with at least

one such window of m A-to-G changes and two clones with G-to-A

changes (Supplemental Table S5). These 118 clones include 87

clones identified by test 1 (Supplemental Table S6). Additional

methods and results are described in Supplemental Text S3.
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